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Abstract
Maxwell’s multipoles are a natural geometric characterization of real functions
on the sphere (with fixed �). The correlations between multipoles for Gaussian
random functions are calculated by mapping the spherical functions to random
polynomials. In the limit of high �, the 2-point function tends to a form
previously derived by Hannay in the analogous problem for the Majorana
sphere. The application to the cosmic microwave background (CMB) is
discussed.

PACS numbers: 02.30.Px, 05.45.Mt, 98.70.Vc

A striking feature of randomness is the emergence of structure arising from independent
processes. Here, I describe a simple, universal correlation structure associated with statistically
isotropic random functions on the sphere: the correlations between Maxwell’s multipoles.
In the multipole representation, any real spherical function �(θ, φ), with fixed �, may be
represented by � unit vectors u1, . . . ,u�,

�(θ, φ) =
�∑

m=−�

amYm
� (θ, φ) = C(u1 · ∇) · · · (u� · ∇)

1√
x2 + y2 + z2

(1)

for a−m = (−1)ma∗
m (ensuring reality of �), (x, y, z) restricted to the sphere and C a

numerical constant. The � vectors ui are called Maxwell’s multipoles [1], and are determined
uniquely (up to sign) [2–4]. The significance of the Maxwell representation is that the
multipoles rotate directly with the function, and are defined without reference to an external
reference frame (unlike spherical harmonics). An arbitrary spherical function with fixed �,
with its corresponding multipole directions, is shown in figure 1.

The quantity discussed in this note is the correlation of the Maxwell multipole directions
for completely random functions of the form (1). Complete randomness means that the
probability density function of � depends only on the sum

∑�
m=0 |am|2; the statistical
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Figure 1. A sample spherical function � for � = 10. The radius of the plot is determined by
�(θ, φ) plus a constant, and shaded according to the value of �. The Maxwell multipole directions
for the function are also represented.

distribution of the multipoles (which is automatically rotationally symmetric) is determined
absolutely by this restriction. Here a Gaussian distribution of the sum is chosen for
calculations, which implies that the am coefficients can be taken as independent (for m � 0),
identically distributed Gaussians (by analogy with the derivation of the Maxwell distribution
in kinetic theory).

The statistical morphology of cosmic microwave background (CMB) radiation is still
little understood, and it has been suggested that correlations between Maxwell multipoles
might reveal hidden structure in the data [5–7]. Here, I will derive the universal
correlation function of Maxwell multipoles for a statistically isotropic spherical function,
using independent Gaussian random am coefficients. The present analytic approach contrasts
with the numerical Monte Carlo computations for the same isotropic Gaussian distribution
studied in the papers referred to above.

The main tool used in the calculation is the Majorana representation of spherical functions
(also called the ‘stellar representation’) [4, 8–11]. In this representation, the function �(θ, φ)

with the form (1) is represented as a polynomial in the complex variable ζ ,

f (ζ ) =
�∑

m=−�

(−1)m
(

2�

� + m

)1/2

amζ �+m. (2)

The relationship with the sphere is realized by taking ζ = exp(iφ) tan(θ/2) as a stereographic
coordinate in the complex plane. Since each a−m = (−1)ma∗

m, the roots of the polynomial
f occur in antipodal pairs ζi,−1/ζ ∗

i ; these are the stereographic projections of the Maxwell
multipole vectors (whose sign is undefined) [4]. For complex functions on the sphere (with
independent am), spinor-like Majorana directions arise from the roots of (2). (In the language
of group theory, basis functions of the unitary (rotation) group SU(2) are mapped to those of
the linear group SL(2, C) in this representation.)

The identification of the spherical function (1), with Gaussian random coefficients, with
the polynomial (2), reduces the problem to a calculation of the statistics of roots of random
polynomials. The roots of spin-like random polynomials (SU(2) polynomials) have been
studied, particularly in connection with quantum chaotic systems [11–19], with the distribution
(2), but different restrictions on the identically distributed Gaussian coefficients am.
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The present calculation is similar to that of Hannay [11], who derived the k-point
correlation function ρk between the Majorana spinor directions for complex functions
analogous to � in equation (1), that is, with no additional requirements on the coefficients
am. The 2-point function ρ2, in the large � limit, was found to have a simple universal
form. Following the same method, Maxwell’s multipoles are found here to limit to the same
function. Readers not interested in the details of the calculation may skip to equation (9) and
the following discussion.

As stated above, � in equation (1) is assumed to have coefficients am independent and
identically Gaussian distributed (which implies, but is not implied by, isotropy):

〈a∗
man〉 = δm,n, 〈aman〉 = (−1)mδm,−n. (3)

All statistical information about the multipoles is in the zeros of the Majorana polynomial
(2), which are accessed by averaging fi ≡ f (ζi) at the point ζi , and its derivative f ′

i ≡
df (ζ )/dζ |ζ=ζi

. The joint probability density function P for k points f1, . . . , fk, f
∗
1 , . . . , f ∗

k ,

f ′
1, . . . , f

′
k, f

′∗
1 , . . . , f ′∗

k is given by the Gaussian distribution

P(f1, . . . , fk, f
∗
1 , . . . , f ∗

k , f ′
1, . . . , f

′
k, f

′∗
1 , . . . , f ′∗

k ) = exp(−F ∗ · M−1 · F /2)

(πk
√

det M)
, (4)

where F = (f1, . . . , fk, f
∗
1 , . . . , f ∗

k , f ′
1, . . . , f

′
k, f

′∗
1 , . . . , f ′∗

k ), and M is the 4k × 4k

Hermitian correlation matrix Mij = 〈F ∗
i Fj 〉. Following [11], submatrices (of dimension

2k) of M will be identified:

M =
(

A B
B† C

)
. (5)

Nonvanishing terms (and their conjugates) appearing in M are [11]

〈f ∗
i fj 〉 = (1 + ζ ∗

i ζj )
2�, 〈fifj 〉 = (ζi − ζj )

2�,

〈f ′∗
i fj 〉 = 2�ζj (1 + ζ ∗

i ζj )
2�−1, 〈f ′

i fj 〉 = 2�(ζi − ζj )
2�−1,

〈f ∗
i f ′

j 〉 = 2�ζ ∗
i (1 + ζ ∗

i ζj )
2�−1, 〈fif

′
j 〉 = −2�(ζi − ζj )

2�−1,

〈f ′∗
i f ′

j 〉 = 2�(1 + 2�ζ ∗
i ζj )(1 + ζ ∗

i ζj )
2�−2, 〈f ′

i f
′
j 〉 = −2�(2� − 1)(ζi − ζj )

2�−2,

(6)

following from averaging the complex polynomials (2) using (3).
The k-point function ρk(ζ1, . . . , ζk) is found using standard methods for finding the

correlations of zeros of Gaussian random functions (e.g. [20]):

ρk(ζ1, . . . , ζk) = 〈δ(f1)δ(f
∗
1 ) · · · δ(fk)δ(f

∗
k )|f ′

1 · · · f ′
k|2〉

= 1

πk
√

det M

∫
d4kF δ(f1) · · · δ(f ∗

k )|f ′
1 · · · f ′

k|2 exp(−F ∗ · M−1 ·F /2)

= 1

πk
√

det M

∫
d2kF ′|f ′

1 · · · f ′
k|2 exp(−F ′∗ · N−1 ·F ′/2), (7)

where F ′ = (f ′
1, . . . , f

′
k, f

′∗
1 , . . . , f ′∗

k ), and N−1 is the submatrix of M−1 in the position
of C in M. By Jacobi’s determinant theorem [11, 20], N = C − B†A−1B, and det M =
det A det N.

The final part of the calculation is a Gaussian integration by parts (i.e. the finite-
dimensional analogue of Wick’s theorem), and the final result is (πk

√
det A)−1 times a

combinatorial term. This term is the sum over products of elements of N, one for each
pairing of the 2k terms f ′

1, . . . , f
′∗
k . The elements of N in the product are those which

correspond to the appropriate components of F ′,F ′∗ in the quadratic form.
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The simplest nontrivial case is the 2-point function ρ2, which is

ρ2 = (N11N22 + N12N21 + N14N41)/(π
2
√

det A). (8)

It should be noted that, since the fi are correlated with each other (rather than simply with their
conjugates), this combinatorial term is rather more complicated than the simple permanent
found in [11]; furthermore, the choice of some elements of N is not unique (for example, in
the third summand in the numerator in (8), N14 = N23, N41 = N32).

The 1-point function ρ1 is simply the density of roots in the complex plane (counting
each multipole direction, undetermined in sign, twice). On the sphere, this is uniform with
value 2�/4π . The 2-point function ρ2 can be simplified by taking the two points to be 0
and r (with r = tan θ/2 for points with angular separation θ ); no generality is lost since the
distribution is rotationally symmetric on the sphere. From (8), this is

ρ2(0, r) = (π2D5/2)−1{[2�D − 4buv − (b2 + v2)(a − 1 − u2)]

× [dD − 2cuv(a + 1 − u2) − (c2 + av2)(a − 1 − u2)]

+ [2�D − 2cuv − buv(a + 1 − u2) − v2(a − 1 + u2) − bc(a − 1 − u2)]2

+ [wD − 2bcu − uv2(a + 1 − u2) − bv(a − 1 + u2) − cv(a − 1 − u2)]2} (9)

with D = det A = (a − 1 − u2 − 2u)(a − 1 − u2 + 2u) and, extending the notation of [11],

a = (1 + r2)2�, b = 2�r, c = 2�r(1 + r2)2�−1, d = 2�(1 + 2�r2)(1 + r2)2�−2,

u = r2�, v = −2�r2�−1, w = −2�(2� − 1)r2�−2. (10)

To find the 2-point multipole correlation function on the sphere ρsphere(θ), for points with
angular separation θ , this must be multiplied by the stereographic Jacobian (1 + r2)2/16
and substituting r = tan(θ/2) [11]. ρsphere(θ) is symmetric about π/2, by antipodality of
the multipole directions. The function may be normalized (i.e. is unity when points are
uncorrelated) by dividing by the square of the density 2�/4π . When � = 2, ρsphere(θ) can be
found from equation (9),

ρsphere(θ) =
(

4

4π

)2 27(1 − cos2 θ)

2(3 + cos2 θ)5/2
(for � = 2), (11)

agreeing up to a numerical constant with that found by [7]. ρsphere is plotted against θ in
figure 2 for some choices of �. There is good agreement with the corresponding numerical
results of [7] (who plot against cos θ ).

In [11], it was found, for a general complex isotropic Majorana polynomial, in the limit
of large �, that ρ2(0, r) tends to (�/2π)2g(

√
�r), where

g(R) = ((sinh2 R2 + R4) cosh R2 − 2R2 sinh R2)/sinh3 R2. (12)

In equation (9), on writing r = R/
√

� and taking the large � limit (in which u, v and w

approach 0), equation (9) factorizes to give the 2-point function of this general complex
case (equation (11) in [11]). In the complex plane, this large � limit of the general random
Majorana polynomials is the universal ‘chaotic analytic function’ [16, 19].

Different symmetries for the random polynomial coefficients have been investigated,
such as for am real [13]. In this case, the distribution of roots in the complex plane behaves
singularly on the real axis (where roots appear in complex conjugate pairs), and approaches
the chaotic analytic function behaviour far from these lines (where there is little influence
from the conjugate, paired zero). The generalization of random polynomials with coefficients
of fixed argument [15] have similar behaviour. The distribution of roots of the Maxwell
multipole polynomials is uniform on the (stereographic) sphere, and the difference with the
chaotic analytic function polynomials is the presence of the antipodal root, whose influence
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Figure 2. The 2-point correlation function on the sphere ρsphere, plotted against θ (in degrees) for
multipoles with separation θ for (a) � = 3; (b) � = 5; (c) � = 10; (d) � = 100. The function
has been divided by the square of multipole density �/2π (so approaches 1 for large �), and the
behaviour for small θ is quadratic.

diminishes as � increases. Therefore, for high �, the correlations between Maxwell multipoles
also limit to the form (12), apparently by a power law.

g(R) exhibits quadratic repulsion at the origin with a small maximum of 1.0531 at
R = 1.4985, and thereafter approaches 1 exponentially. For high �, the maximum of ρ2

(visible in figure 2) is approximately at θ = 3/2
√

�. In this limit, the 2-point function of
Maxwell multipoles is therefore constant (there is no correlation) apart from a tiny repulsion
region near each multipole. This is analogous to the closely related system of a one-component
plasma on the sphere [21], whose 2-point correlation function, in the thermodynamic limit,
approaches a constant apart from repulsion very near the origin.

Higher correlation functions between more Maxwell multipole directions, which are
universal for completely random spherical functions, can also be calculated using the
methods described here. For large �, these will tend to the same behaviour as high � random
Majorana polynomials [11, 19]. However, it is possible that lower � correlations might reveal
more subtle structure, which may be compared with CMB data.
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